
Numerical Analysis of Boundary-Layer 
Problems in Ordinary Differential Equations 

By W. D. Murphy 

1. Summary. We categorize some of the finite-difference methods that can be 
used to treat the initial-value problem for the boundary-layer differential equation 

(1) /.Ly'=f(y,x); y(O)= y0 

These methods take the form 

k k 

(2) E aiYn+i= h- E 3if(Yn+i xn+i) +Rn 
i=0 i=o 

where a, and # (v = 0, 1, *, k) denote real constants which do not depend upon 
n, Rn is the round-off error, ,u = he, 0 < -y < 1, and h is the mesh size. We define 
a new kind of stability called u-stability and prove that under certain conditions 
ju-stability implies convergence of the difference method. We investigate ,u-stability 
and the optimal methods which it allows, i.e., methods of maximum accuracy. 

The idea of relating u to h allows us to study the nature of the difference equa- 
tion for very small /u. We can, however, look at this in another way. Given a differ- 
ential equation in the form of Eq. (1) we ask how can we choose h so that the as- 
sociated difference equation will give an accurate approximation. If u is sufficiently 
small, choose h by the formula h = g' c" where 0 < y < 1. 

2. Boundary-Layer Phenomena. Eq. (1) characterizes the boundary-layer prob- 
lem for the first order in one unknown. The small interval near the initial point 
(x = 0) where the slope of the curve y(x, u) is changing most rapidly is called the 
boundary layer. An estimate of this interval is [0, -Au ln ,u] where A is a positive 
constant that is independent of ,u. This theory has been well investigated in recent 
years and a rather complete study can be found in Vasil'eva [7]. We briefly de- 
scribe the treatment found there. 

We first introduce some definitions. Let y = +(x) be one of the solutions of the 
degenerate equation f(y, x) = 0. 

Definition. The root y = +(x) is isolated on the set [0, 1] if there exists an E > 0 

such that f(y, x) = 0 has no solution other than +(x) for Iy - (x)I < e. 
Definition. The isolated root y = +(x) will be called positively stable in [0, 1] if 

cf(o(x), x)/Oy < -L < 0 for all x E [0, 1]. 
Definition. The domain of influence of an isolated positively stable root y = +(x) 

is the set of points (y*, x*) such that the solution to the adjoined equation 

(3) dy/dr = f(y, x*) 

(x* is regarded as a parameter) satisfying the initial conditions y l,=o = y* tends 
to the value ?(x*), as r -* oo. 
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The main theorem about boundary-layer equations is the following: 
THEOREM 1. If some root y = +(x) of the equation f(y, x) = 0 is an isolated posi- 

tively stable root in [0, 1], and if the initial point (y?, 0) belongs to the domain of influ- 
ence of this root, then the solution y(x, ,t) of Eq. (1) tends to the 4(x) of the degenerate 
equation, as ,u O, for O < x _ 1. 

Proof. See Vasil'eva [7]. The paper by Vasil'eva [7] goes on to explain how to 
find an asymptotic expansion of the solution of Eq. (1) in terms of the small pa- 
rameter u.. Here in addition to the conditions of Theorem 1 we assume that f(y, x) 
has continuous partial derivatives of order up to n + 2. With this condition, 
Vasil'eva finds an asymptotic expansion for y(x, uz) which contains n terms. Inside 
the boundary layer [0, -Auz ln u], where A is a constant independent of uL, each 
term of the asymptotic expansion contains three functions found by solving three 
separate differential or transcendental equations. Outside the boundary layer 
(-Auz ln uL, 1] the terms are much simpler and can be determined from the varia- 
tional equations. This procedure for finding the asymptotic expansion is a very 
tedious one and can only be explicitly calculated for the simplest problems. 

It is the aim of this paper to tie together the known numerical analysis theory 
with the boundary layer theory in such a way that this problem can be solved with 
computers even as A -* 0. If we attempt to apply the standard proof of convergence 
to the difference Eq. (2), we run into serious difficulties because the following limit 
occurs: 

(4) lim (1 + Mhl-')n = 

h-O ;xn=nh 

where M is a positive constant. However, if we are a bit more careful, we can make 
use of the fact that 

(5) lim (1- Mhl-)n = 0. 
h-*O ;x=nh 

This limit will be directly related to the condition - L < (Of/9y) < 0. A price 
is paid for the privilege of using Eq. (5); namely, we must restrict ourselves to a 
smaller class of difference equations than is generally done in ordinary differential 
equations (ODE). In fact, this class will contain optimal methods of order at most 
k + 1 instead of k + 2 as is the case in Dahlquist [1]. See Murphy [6] for the proof 
of this last result. 

3. ji-Stability. We associate with the difference Eq. (2) two polynomials 

P = ak;k + ak-l k-1 + * +ao (ak7O ) 0 

;= fk; + /3k-1l + * + fib, 

and we assume for convenience that p(r) and o-(r) have no common factors. Further- 
more, our consistency condition is that p(l) = 0 and p'(1) = u(1). The stability 
condition proposed by Henrici [2] and Hull and Luxemburg [3] is that the roots of 
p(r) = 0 lie in or on the unit circle in the complex i-plane, and are simple if they 
lie on the circle. 

This stability condition is not satisfactory for us, as can easily be seen by look- 
ing at the difference Eq. (2) without the terms Rn associated with the differential 
equation 
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(6) y' = -Loy, 

where Lo is a positive constant. Here the solution takes the form 

(7y) Y = CogJn + C1r1 + * 
n + Ck1 , 

where the CQ's are constants depending on the initial conditions and 

(8) pj = rjO ? (-i! (m7)) Loh1-)1 + O(h2(1)/ 

where p(?jo) = 0 and m is the multiplicity of the root Djo. 
It is clear that roots of p(v) which lie inside the unit circle will not cause any 

problems with regard to boundedness of the solution of the difference equation. 
However, the simple roots on the unit circle may lead to divergent methods. r = 1 
is always an acceptable root by the consistency condition. Furthermore, the con- 
dition 

(9) o(-1)/p'(-1) < O 
insures boundedness of I jIn for the root DjO = -1. 

If Djo = eilj and pj + iqj = -o(ei0i)/p'(ei1i) then 

ki1I = INj n = [1 + 2Lo(pj cos Oj + qj sin Oj)hl-' + O(h2-27)]n'2. 
Therefore, we require 

(10) pjcosOj + qj sinOj < O. 

Inequalities (9) and (10) in addition to stability will categorize a new kind of 
stability which we choose to call ut-stability. 

If we have m roots on the unit circle, the condition (10) reduces to m/2 condi- 
tions because we are dealing with complex conjugates. See Murphy [6] for the de- 
tails. 

The condition of ui-stability can be thought of as merely conditions on the co- 
efficients, #,f. An example will clarify this point. 

Example 1. Let p(?) = 2- 1; the roots are 4 = +1. By consistency 

(11) p'(1) = 2= f2 + f1 + o. 

By condition (9) 

(12) 0(-l)/p'(-l) = (32- -1 + #o)/(-2) < 0. 

Combining Eqs. (11) and (12) gives 

(13) 31 < 1. 

Thus the inequality (13) is equivalent to the condition of ui-stability for this ex- 
ample. Note that Simpson's rule (fl1 = 4/3) is not ui-stable. 

In the analysis to follow it will be desirable to also consider a stronger kind of 
stability called relative stability. 

Definition. A difference scheme characterized by the polynomials p(?) and u(?) 
will be called relatively stable if the roots of p(r) + hl-ou() = 0 have the property 
that 
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(14) J1ij < Jtoj = 1 -h'- + O(h2(O')X i = 1, 2, . k- 1. 
For a relatively stable scheme we must require 

(15) c(-1)/p'(-1) < -1 

and 

(16) pj cos Oj + qj sin Oj < -1/2. 

4. Convergence. A few lemmas will be required for the main theorem of this 
paper. 

LEMMA 1. Let the consistent difference equation 

k k 

,( aiYn+i = -Loh'-7 E OiYn+i 
i=O- i=O 

be A-stable. Lo is a positive constant with the property that -L < -Lo ? -L < 0. 
Let (i be the solution of this difference equation with initial conditions 

(D = (D 1 = ** Ik-2 = 0, '1k-1 = (ak + hl'YLo3k)-1. 

Then, for all n > 1, 

(17) E lbil 5 
for h sufficiently small and where C, a constant, may be chosen independent of h and Lo. 

Proof. The solution to the difference equation is given by Eqs. (7) and (8). By 
Cramer's rule, we can write 

Cj = DJW, where Dj and W reduce to Vandermonde determinants. Conse- 
quently, 

IDjI = I (ak + hl-''LO/k)->' I k8-t t<8;8; oj; to j 

and W = II ,<s (i - j). Therefore, 

-I (ak+ hl-fL&'k)-Il 

][jto;io jri - N 
, 

A positive power of h is the leading term of a difference expression Pj- j only 
when jiO = DjO. Assume that too = 1 and Djo has multiplicity mj. Then 

hCl-('-'Y)(,mj-l)lmj, 

If mj = 1, then by Au-stability there exist a constant L > 0 such that IRj.2 < 

1 - Lhl-'. In this case 

n-1 

ICjl E (1-Lh"-) i/2 < Clh('-8) 
i=o 

for h sufficiently small. If mj > 1, then by ,-stability and for h sufficiently small 
JDij _ r < 1. Here 



NUMERICAL ANALYSIS OF BOUNDARY-LAYER PROBLEMS 587 

oi_l 0 h(1`)(mf-1)/mj hl- 

Combining these results gives Eq. (17). Q.E.D. 
Using the same conditions as in Lemma 1, we have the immediate consequence 
LEMMA 2. 

n\ 
(18) n r + (1 - Lh' )n) 

for h sufficiently small, where m equals the maximum multiplicity of the roots Djo and 

r = (1/2)(1 + max ljoI<' f|.ioJ) < 1. 

L and 4 are positive constants independent of h and Lo, i.e., L and b are uniform 

bounds for all Lo such that -L < -Lo < -L < 0. 

We will naturally assume that all of the conditions of the hypothesis of Theorem 

1 are satisfied in proving the next result. 

THEOREM 2. Let the consistent finite-difference equation 

k k 

(19) E aiYn+i = h- E #iFn+i + Rn I 
t=o ~~~~i=o 

where Fn+i = f(Yns+, xn+ ) and Rn is the round-off error, satisfy the following condi- 

tions: 

(a) Rn =0(hl('-8)); 

(b) The finite-difference equation is relatively stable; 
(c) af/Ox, Of/Oy, and a2f/Oy2 are continuous and bounded (-L ? af/ly ? -L < 0) 

rof 0 ? x ? 1 and - oo < y < + oo; 
(d) leil = Yi - yil < Th-"y for i = 0,1, * * *, k -1 where T is a positive con- 

stant independent of h. Then for h sufficiently small there exists a constant C such that 

en4 ? Chl-'for n = 0, 1, * * *, N where 0 _ xn < xN = 1. 

Proof. The exact solution of ,uy' = f(y, x) satisfies the difference equation 
k k 

(20) E ae iyn+ i =h'-' E 0 ifn+ i + Tn 
i=o i=O 

where Tn, the truncation error, is O(h2('-Y)) by the consistency condition and the 
hypothesis (c). 

Subtracting Eq. (20) from (19) and letting ei = Yi- yi, we obtain 
k k Jo _ o 

Z a,ien+i = h'" 2 13i(Fn+i - fn+i) + Rn -Tn 
(21) i=? i=O 

k 
IN 

= h l- E f3i J en+i + Rn -Tn 
where 

97n' = + a' (Yn+i + +i(Yn+i - Yn++i), Xn+ i) Oly Oly 

Denoting the right side of Eq. (21) by Qn, we find that 
k 

(22) fQnl ? hl-,fL iE jen+i4 + IRn - Tn1 
i=O 
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where,/ = max '34. 
The solution to Eq. (21) is given in Hull and Luxemburg [3] as 

(-k 
(23) ~~~~en = E 9n_i_lQi + On I n k k, 

(23) i=On~n k 
ofn n < k, 

where gn is defined as the solution to E aign+i = 0 with initial conditions 
go = 91 = g= k-2 = 0, gk-1 = ak'1; and where 

k-1 /k- i-1\ 

On = E (E ak-jn+ki-jjl)ei for n 2 k. 
i=o j=o 

Consequently, by relative stability we can set max Ign= g < oo. Then 

k-i 

(24) IOnj ? kacg E leil < k 2agThl-' < K1hl-y 

by condition (d). Here a = max Jail arAd K1 = k 2agT. 
From Eqs. (22), (23), and (24) we obtain 

n-1 n 

(25) IenI < hl-',#gLIenI + h -73YgL(k + 1) e + 9e O(h2(17) + IOnI 
i=O i=k 

Now if h ? ho where ho'-1e,gL < 1 and 0 < n ? No I in hl-Y/ln r, where 
r = (1/2)(1 + max Irj,l) as 1 jiol < 1, then 

n_1 
(26) len hl-'A E leil + K3h'- 

i=o 

where 

gK2Nohl' + K1 a1gL(k + 1) - >_ 1 = and A?> 1' 1 - ho-gL 1 - ho - 3gL 

K2 is a bound for Rni and Tn. By a simple induction it follows that 

(27) lenj < K3h'-7(l + Ah'-)8 < K3h' -7e 

le,j < K3h'-' exp (Ah"- In h'-'/ln r) 

for 0 < n ? No. 
Although the last three inequalities leading to Eq. (27) assure us that 

en= O(hl-Y) for the interval [0, XNO], we cannot use this approach for the whole 
interval [0, 1] because for nh = 1 

exp (nAhl-') = exp (A/h) -* oo as h ->0 (nh = 1). 

However, use has not yet been made of the fact that af/dy is continuous and 
-L < af/ly ? -L < 0. To incorporate these suppositions into the proof requires 
a rather subtle argument. Basically, we translate the smallest value of df/dy to the 
lefthand side of Eq. (21) and then make use of Lemmas 1 and 2. This technique 
leads to the introduction of the maximum norm (En = max (leol, jell, * * *, |enj) 
and consequently the continuity condition is imposed so that the coefficient multi- 
plying En remains less than one in absolute value for some initial interval [0, XN1] 
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where N1 can be chosen greater than No under certain assumptions. Finally, the 
estimate (27) is used together with the one for En to obtain an upper bound for En 
on the interval [0, XN1]. The argument is repeated 1 - 1 times where NJ = N and 
XN = 1. 

In order to consider n > No we proceed as follows: Find an interval [0, XN1I 

where -L1 -< af(y(x), x)/dy < -L1 < 0 and 

k-1 k lI I 

(28) hl-' ' (L1 - Eh Z - flu <_ 1 
i=0 . j=O 1- k0I< 

where the ' means the sum is taken over those i's corresponding to roots Diol = 1 
and the Ci's are defined with respect to the difference equation 

k 

(29) E (asi + hl 7jBiLi) 4+i = 0 
i=0 

with initial conditions (Do = 4bl = 2= 4= bk-2 0 and bk-l = 

(aKk + hlY-/3kL)-1l. The Green's function takes the form 

In = Co0 
n 

+ C1l 
n 

+ * + Cklr1 

and by relative stability 

lDl< lo, i = 1, 2, * * k-1 
where Po = 1 - Lih'-y + O(h2(1-y)). Eq. (28) may now be rewritten as 

=_- k-1 k 

L1~.E ll Cil E loji < 1 
Li + O (hl'Y) i=0o 

j= 

We will assume that h is sufficiently small and 

k-1 k 

(30) E' Icil E liA 
i=0 j=0 

is close enough to 1 so that No < N1. Corollary 1 will show how this double sum 
can be minimized. 

If we now add hl-'y Ek__= /iLi e +i to both sides of Eq. (21), we obtain 
k k A 

(31) E (ai + hl-'Y,L1)en+i = hl-y E [3 Li + en+i + Rn- Tne 
i-- 0 ~~~~~~i=0 a\ 

Let the right side of Eq. (31) be denoted by qn and note that 

|L1+df n +il < Li-L + O(en+i) 

for 0 < n < N1 - k and i = 0, 1, ** , k, where we have used condition (c). 
Now it follows that 

k 

iqii < hl-'(L1 - L1) E i3jj |ei+j| + (h2(1-hy)) 

(32) k _ 

+ O(hl-y Eei+j12), 0 < i < N1-k, 
j=O 
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using condition (a) and our knowledge about Tn. 
The solution to the difference equation, Eq. (31), is 

n-k 

F, 4n-_lqj + Tn, n > k, 
(33) en>k= e *- n < k, 
where 4b was defined by Eq. (29) and 'Jn is given by 

k-1l/k-i-1\ 

n= (k E (ak-f + hlk jL1) )n+ki-j-1)ei for n > ki. 

However, by Lemma 2 we can write for n > No 

(34) 'I*'1 1 k2(a + hlYi3L)4{,jr ? + (1 - Lh)l-jY)OThl 7 

<K4Thl'T for n _ No. 

Defining En = max (jeol, jell, l,, Ie) and using Lemma 1, we have 
n-k 

(35) E J Dn-j-,1O(h 2(1--,)) :9 K5hl-'y 
i=O 

and 

n-k 

(36) E J(Dn-j-10(h l-yEn2) < K 6En2 
i=O 

A bound can now be obtained for en using Eqs. (32) through (36): 

/ ~ ~~k n_ k \ 

e~j ? (Li - 1 -I3E'Y+K4h~+ K5h1-' + K6E n en < h- L1- ) Zj I En IiA n- -l I + K4Thl 
j=O i=O 

[k-1 k |j 

+ K4Thl-' + K5h'-7 + K6En2, No ? n < N1 , 

where the O(hW'-d) Im) term results from the roots jljol < 1 and Lemma 2. 
By our choice of N1 (see Eq. (28)) and relative stability the term in brackets 

multiplying En will be less than a < 1. 
Hence, 

(37) Ie.1 < aEn + K5hl-' + K4Thl + K6En2 forNo < n < N1. 

If En = leji for j < No, then we may use our estimate, Eq. (27). If j > No, 
we can replace IenI in Eq. (37) by En and obtain 

(38) En<1K5 hl-' l + Kn K O? n?N1, 

since this bound is larger than the one for lenI for 0 ? n < No, i.e., see Eq. (27). 
Geometrically, we have the following picture 
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t _ _ _~ ~~~~_ K l-+r4h 

r /E 2 

K 

Kn 
5h-h 

4' 
-Y1 

1-a 1-a 

K6 

We wish to show that En ? di for 0 < n ? N1. It will then follow that 

(1_4(K4T + K26) 1/2-t) -1 + - K6 1-7))/2 (K4T + K5)hl1' + O(h 2(1--j). 

-2K6 a 
1-a 

The proof that En < d, for 0 ? n ? N1 is by induction. Rewriting the difference 
equation, Eq. (21), with n replaced by n - k and assuming h < ho where 

|lak| >Ljlkjho'-" 

we have 

Ie~ ? < J a i + hl3 Ai(a9n - k + i/ay) I Ieen-k+ti + IRn-k- Tn-k 

i=e I kl - I k Ihol-ya I |k-. I k Ihol z 

< K7En_l + K Sh2(-1) . 

Ek.1 ? Thl-y < di by hypothesis. By induction assume En-, < di and h is so 
small that 

lenf < K7dj + K8h2(1-T) < di + d2 
and therefore En < di + d2. But now by Eq. (38) En < di + d2 implies En < di. 
Thus by induction 

(39) En < Kr3h + K4Th1t + 0(h2(1-z -a + -a+O(21) 

for 0 < n < N1. 
We may now repeat the argument and extend the interval to [0, XN2] where 

N1 < N2. We of course must use Eq. (39) for the initial conditions in the second 
interval. 

Finally, at the end of 1 intervals a simple induction argument will show that 

[1 -(1jia) K5h1v- (K'i a 
(40) En K, 1-a + Thl + O(h-) 

1-a 

for O _ n < N, = N. Q.E.D. 
Naturally, the bound for En given by Eq. (40) may be large if 1 is large, i.e., if 



592 W. D. MURPHY 

k-i k 

Elcil E ljil Z'c 0 j=ZO 
is much greater than 1. We therefore wish to minimize this sum. Since the roots 
Djo 0 1 on the unit circle do not yield ,u-stable difference schemes of higher pre- 
cision than those roots inside the unit circle, we will exclude such roots for now. 

A few important corollaries are: 
COROLLARY 1. If the only essential root (root on the unit circle) is Djo = 1, and if 

ak = 1 and f3j > 0 for j = 0, 1, ** , k, then the value of l in Theorem 2 (inequality 
(40)) is one. 

Proof. Since 3,j _ 0 by consistency 

k 

p'(l) = E 1|Bil = (1 - rl) (1 -r2) ... (1 - rk-1) 
j=O 

where p(r,) = 0, i = 1, 2, ***,k- 1. 
In Lemma 1 it was shown that 

Go! < o - 
1/ (ak + O(hl-')) 1 + 0 (hl-') . 

lci<(r0 ?1) (?0 - 2) ***(v0 - k1 (1) 

Therefore, ICol D-0 Ifjl3 1 and 1 can be chosen equal to 1. Q.E.D. 
COROLLARY 2. If the only essential root is Djo = 1 and 

(L - 7)CICo <1 

where JPoj = 1 - Lhl-' + O(h2(1-y)), then the value of 1 in Theorem 2 is one. 
Proof. The proof is obvious. 
An example will illustrate how the value of 1 may be estimated in practice. Con- 

sider the differential equation ,Ay' = -y(y - 1)(20x + 10); y(0) = 2. 
In the boundary layer for all 0 < h < ho, -30 < fz, < -10. 
Example 2. Suppose Adam's method 

Yn+3- Yn+2 = h' (9Fn+3 + 19Fn+2 - 5Fn+1 + Fn) 

is used to calculate the solution to the above differential equation. Here 

3 34 
lcol E loil 24 

Since fv is monotonic in the boundary layer 

= ~~~30 -Li 34 
L1= L2=L1,L2=L3 =L2, etc., 300.8 

where we have let a = 0.8 < 1, 

Li = 30(0.435) = 13.1, L2 = 30(0.435)2= 5.66. 

Outside of the boundary layer we make use of the following fact from the 
asymptotic theory: 
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f,(y(x, ,u), x) = fy(1, x) + 0(h7) = -20x - 10 + 0(h7) 
for 

-(2/L)h7lnh7 < x < 1. 
Here fy(1, x) is independent of h and is monotonic (-30 $ fX,(1, x) ? -10). Thus 
we must increase 1 by 2. Hence 1 = 4. In practice it was observed that there was no 
error build up outside of the boundary-layer region for II-stable schemes. Therefore, 
the estimate 1 = 4 is to be considered an absolute maximum for the value of 1 in 
this example. 

Remark 1. The same proof of Theorem 2 could be used to obtain bounds for 
,u-stable methods instead of the less general relatively stable methods, but these 
,u-stable methods would require a much larger value of 1. 

Remark 2. Instead of considering - oo < y < oo we could have considered a 
strip: 0 < x < 1 and Iy - y(x) I < t where t is as large as is necessary in the proof. 

Remark 3. If in Theorem 2 R. and Tn are 0(h(P+) (1-7)) and e* = 0(hP(1-)) for 
i = 0, 1, .. k - 1, then the same proof will lead to the result that en = 0(hp(17-)) 
forn=0,1, **.,N. 

5. Optimal Methods. By the "best method" or optimal method we will mean 
the ,u-stable method which allows both 1 and Tn to be a minimum simultaneously. 

By Corollary 1, 1 will have the value 1 if fd* > 0, i = 0, 1, ..* , k and the only 
essential root is v = 1. By using the methods outlined in Henrici [2] on optimal 
methods we find that the "best methods" for the roots r = 1 and r = r where 
rl < 1 take the form 

Yn+2 (1 + r)Yn+i + rYn 

12 [(5 + r)Fn+2 + (8 - 8r)Fn+1 + (-5r - 1)Fn] + Tn 

where 

24 r) 4 Tn 24 (+r)Y(lv)h4 

Now if -1 < r < - 1/5 all f*'s will be greater than or equal to zero. Therefore, 
we merely pick r close to -1 in order to make Tn small. 

For the case k = 3 let the roots be r = 1, ri, and r2 with Irnj < 1 and fr2f < 1. 
Of course if ri is complex then r2 must be its complex conjugate. The optimal 
methods are characterized by: 

f33 = (1/24)[9 + ri + r2 + r1r2], 

132 = (1/24)[19 - 13(r, + r2) - 5rir2] , 

fl, = (1/24) [-5 - 13 (r, + r2) + 19r1r2J, 

1o = (1/24)[1 + ri + r2 + 9r1r2] . 
The condition that guarantees j3i > 0 is the most restrictive; we must require 
Re r1 < 0, Re r2 < 0 and -13(r, + r2) > 5 or 19rir2 > 5. 
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These inequalities will be satisfied if r, and r2 lie in the shaded region of Fig. 1 
and are complex conjugates if either is complex. Note also that 

T. = (1/720)(-19 - llri - hr2 -19rlr2) 

and has a minimum at ri = r2 =- 11/19, which lies in the shaded region of Fig. 1. 

Y = /5/9 

y = -X 

FIGURE 1 

For the case k = 4 we choose the roots, 1, ri = -s, r2 = se i and r3 = se-i@, 
0 < s < 1 and 7r/2 ? 0 <7r, in order to simplify the arithmetic and to insure that 

T, = 1440 [-27 - 27rir2r3 - 11(ri + r2 + r3) -11(rir2 + r1r3 + r2r3)Iy(Vl)(x)h6 

will be small. Note that the minimum occurs at s = 1. 
The corresponding (3's for the optimal methods are given by: 

14 = [251 + 19(r, + r2 + r3) + 11(rlr2 + r1r3 + r2r3) + 19rir2r3s, 

03 = 720 [646 - 346(r, + r2 + r3) - 74 (rir2 + rir3 + r2r3) - 106rir2r31, 

1 
32 = 720 [-264 - 456(r, + r2 + r3) + 456(rlr2 + r1r3 + r2r3) + 264rlr2rs] 

= 720 [106 + 74(r, + r2 + r3) + 346(rir2 + r1r3 + r2r3) - 646rlr2r3I, 

/3o = [-19 - 11(r, + r2 + r3) - 19(rir2 + r1r3 + r2r3) - 251rir2r3l 

The analysis for the (3i's is straightforward, and the conclusion is that we must 
choose 0.695 ? s < 1 and 7r/2 ? 0 < 7r to insure f3s ? 0, i = 0, 1, 2, 3, 4. 

As k increases the analysis becomes much more difficult and even calculating 
general expressions for the (3i's and T. in terms of ri, r2, *, rkAI is very tedious. 
We therefore resort to a slightly different approach. 

From our analysis of k = 2, 3, and 4 we suspect that for the ri's in the negative 
half plane and near the unit circle there is some hope that for k > 4 all (3i's will 
be greater than zero. We make use of the following formulas derived by Hull and 
Newbery [5] for optimal methods: 

Ry (k+2)hk+2 
k r i 

Tn (k+ ! + ( R - x(x-1)..*(x-k)dx, 

where 
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!i-1 = ai + ai+l + + ak 

and 

oj = E i x(xX-1) *(x -k) d /3i=L~~i-iJ (x - i) d 

forj=0,1, *1 ,k. 
The above integrals can be calculated exactly by using the Newton-Cotes for- 

mulas. We have programmed the CDC 6600 computer to calculate the values of fj 
for the limiting values of ri where we suspect favorable results for the ,j's; that is, 
for k even let one root be at r = 1, another at r = -1, and all the remaining ones 
at ~ = i1 i. 

For k odd let one root be at v = 1 and all others at 4 = ?i. We refer to this 
choice of the roots at a-min. This is in contrast to a-max, where one root is chosen 
at v = 1 and the remaining ones at r = -1. 

Although both a-min and a-max define unstable schemes, in practice we would 
choose one root at r = 1 and the other roots inside the unit circle but near the 
roots of a-min or a-max when they lead to #h >_ 0, i = 0, 1, *, k. 

TABLE 1. Computer Calculations 

Degree a-max a-min 

k =3 > O0 > 0 
k= 4 A-0 p 0 
k =5 A?> O _0 
k =6 A-O0 3 _0 
k =7 A> 0 A >0 
k =8 > O0 > 0 
k =9 A _0 > 0 
k= 10 p?0 p<0 
k =11 A>O A > 0 
k =12 A 0 < 0 
k =13 > O0 < 0 
k =14 > O0 < 0 
k= 15 p?0 p<0 
k =16 > 0 < 0 
k = 17 > 0 < O 
k = 18 A _0 < 0 

The results of the computer calculations are given in Table 1 for k = 3, 4, *,18. 
By A _ 0 we mean that ,3 _ O for i = 0, 1, k.l < O means that at least one 
lj was less than zero. 

6. Concluding Remarks. A series of nonlinear boundary-layer problems was 
solved on the IBM 7094 and the CDC 6600 by over 100 finite-difference schemes 
with various choices for the value of -y (O < -y < 1). 

In every case when h became sufficiently small, schemes which were predicted 
to converge by the theory did so, while schemes which were predicted to diverge 
overflowed in the computer. The best accuracy (nine significant figures on the CDC 
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6600) was achieved by the optimal methods described in Section 5. 
These data together with an exhaustive study of this subject including the ex- 

tension to higher dimensions and the system 

,uy' =f(y, z, x), z' = g(y, z, x), 

can be found in Murphy [6]. 
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